The choice of computer
languages for use in
safety-critical systems

by W.J. Cullyer, S.J. Goodenough and B.A. Wichmann

The paper reviews the choice of
computer language for use in
safety-critical systems. The advice
given reflects both civil and military
requirements. A comparison is made
between assembly-level languages, the
language C, CORAL 66, Pascal,
Modula-2 and Ada. It is concluded that a
well defined sub-language is essential
for use in safety-critical projects, and a
guide is provided for project managers
and designers on the characteristics
which such a subset should possess.

1 Introduction

Computers are progressively invading every area of civil
and military procurement. In hospitals, patients are moni-
tored using equipment that contain microprocessors. Air-
craft rely even more heavily on computers for navigation
and safe operation. Military designers are working on
advanced fighter aircraft which are inherently so unstable
that human pilots cannot fly them without computing
systems calculating the required deflections of the control
surfaces every few milliseconds. Nuclear reactors and plants
handling toxic chemicals use microprocessors and medium-
sized mainframes to provide monitoring and alarm systems.

The applications listed above have one thing in common;
design errors in the electronic hardware of the computers or
mistakes in computer programs may result in disastrous
accidents. During recent years, the name High Integrity
Computing has been applied to such critical computing
applications. In the worst case, accidents caused by design
flaws may be of such severity that lives are lost or massive
damage is done to the environment.

Typically in these applications, the role of the computer
is to accept inputs from various sensor systems, perform
some calculations or logic and then provide output to actu-
ators. All designers of critical systems should know the con-
sequences of component failure in service. Random failures
of microchips, sensors and actuators are coped with by
using redundancy; for example, triplicated ‘autoland’
systems in aircraft and quadruplicated energency shut-
down systems in nuclear reactors.

Software Engineering Journal March 1991

In the scientific disciplines that relate to safety-critical
computing, efforts within UK government research estab-
lishments are being concentrated in three areas. First,
research is being carried out into methods of writing techni-
cal specifications for high-integrity hardware and software,
using formal mathematical methods. Secondly, RSRE and
the University of Southampton, amongst others, have been
working on the problems of developing and verifying the
correctness of high-integrity software, and NPL has been
concerned with the validation of compilers [1] and floating
point arithmetic [4]. Thirdly, a team from the University of
Cambridge has devised new methods of designing provably
correct microprocessor hardware. Interestingly, these
methods themselves use highly complex, unproven com-
puter programs. Related work in the US is mainly from
computational Logic Inc. [5-7].

During the last seven or eight years, NPL and RSRE have
provided consultancy in many areas of computer applica-
tions in which human life is at stake. Based on these inter-
actions with industrial design teams, it is clear that very
great care must be exercised in the choice of methods when
designing highly critical ‘black boxes’. Often the advice
sought has related to the choice of computer language to be
employed in the development of a specific product. This
choice is only one element in the overall management judge-
ments when starting a project. However, there are many
other decisions about the techniques to be adopted which
are equally crucial (see Section 2).

This paper attempts to provide advice to designers and
managers on the choice of computer language to use when
developing systems on which human life may depend. A
comparison is made between the use of structured assembly
languages, C, CORAL 66, Pascal, Modula-2 and Ada. This
list should cover many of the civil and military projects
which will enter development in the next few years. This
paper makes it clear that ‘unsafe’ constructions exist in all
known assembly and high-order languages. The flaws that
exist may, in the worst case, lead to an unsafe system.
Hence, the advice given favours the use of well defined
subsets of the commonly available languages.

2 Methods of design for safety-critical
systems

This topic must be addressed before debating the language
issues. In summary, we believe that the integrity of

51

computer-based systems will be improved if the following
principles are heeded:

e the safety-critical elements of the system must be identi-
fied by hazard analysis and clearly delineated in the top-
level documents;

e there should be an overall rigorous, mathematical spe-
cification of the functionality of the safety-critical com-
ponents, e.g. in Z [8-10] or VDM [11];

e all safety-critical elements must have a redundant
design, ie. be multichannel implementations, although not
all the channels need be programmable;

e the software in these channels should be subjected to
independent verification.

More details on these topics are given in a'draft UK Defence
Standard 00-55 [12, 13]. It follows from the list above that
the computer language used for the implementation should
be capable of being used in a formal mathematical environ-
ment. In addition, the syntax and semantics of this lan-
guage must be known precisely enough to enable
techniques such as static code analysis [14, 15] to be used,
via a suitable translator.

Given the requirements for safety and the required coup-
ling to formal methods of specification and verification, it is
possible to draw up a list of questions which seek to estab-
lish whether a language, or sub-language, is a likely candi-
date. Attempts have been made to find a short list of
technical questions which can be used as a filter during the
selection of a language. The following Section gives the con-
clusions from these studies.

3 Questions to be asked when choosing a
language

The questions below should be the minimum set considered
by a project manager and design team when agreeing on
the choice of computer language.

[0 Wild jumps: can it be shown that the program
cannot jump to an arbitrary store location (ie. can the
control flow be totally determined)?

[0 Overwrites: are there language features which
prevent an arbitrary store location being overwritten?

[0 Semantics: are the semantics of the language
defined sufficiently for the translation process needed for
static code analysis to be feasible?

[1 Model of maths: is there a rigorous model of both
integer and floating point arithmetic within the language
standard?

O Operational arithmetic: are there procedures for
checking that the operational program obeys the model of
the arithmetic when running on the target processor?

0 Data typing: are the means of data typing strong
enough to prevent misuse of variables?

O Exception handling: if the software detects a mal-
function at runtime, do mechanisms exist to facilitate
recovery? (e.g. global exception handlers, which may in
themselves introduce hazards if used unwisely.)

[0 Safe subsets: does a subset of the language exist
which is defined to have properties that satisfy these
requirements more adequately than the full language?

0O Exhaustion of memory: are there facilities in the

52

language to guard against running out of memory at
runtime? (e.g. to prevent stack or heap overflow.)

[0 Separate compilation: does the language provide
facilities for separate compilation of modules, with type
checking across the module boundaries ?

[0 Well understood: will the designers and pro-
grammers understand the programming language suffi-
ciently to write safety-critical software?

The question dealing with exception handling needs some
extra comment. Programs can go wrong at runtime. Pos-
sible failures (exceptions) must be dealt with by the applica-
tions programmer. The usual solution is to classify the
types of failure that are foreseen and design recovery
mechanisms for each class. Languages such as Ada provide
direct support for such designs, by offering built-in excep-
tion handling routines. A more radical approach is to try
and design languages which are ‘exception free’, for
example, Currie’s NewSpeak [16].

The list of questions given here may be modified, based
on experience over the next two to three years, but for the
moment it will be used as a yardstick to measure, very
approximately, the merits and pitfalls of candidate lan-
guages. The authors request details of any relevant experi-
ence from readers of this paper.

4 Languages available

4.1 Method of assessment

The assessments given in this Section attempt to differen-
tiate between assembly-level languages, C, CORAL 66,
Pascal, Modula-2 and Ada. Project managers may encounter
proposals for the use of other languages. If so, our strong
advice is that professional help should be sought. In order
to give non-specialists some order of merit when comparing
languages, an elementary notation has been adopted for
appraising the answers to the questions listed in Section 3.
The symbols used are

X: the facility is not provided, and this may result in
equipment that is unsafe.

?: the language provides some protection, but there
remains a risk of malfunction.

*: sound protection is provided, and good design and verifi-
cation should minimise the risk of serious incident.

The resulting Tables should not be regarded as fixed. New
research and development of sub-languages policed by
formal methods may tend to enhance particular assessment
as we move into the 1990s. This is particularly true in rela-
tion to Ada, which at the moment is immature for this
application area. All the assessments given in the Tables
should therefore be treated as lower bounds, arising from
the state of current scientific knowledge.

4.2 Assembly-level languages

Until recently, virtually all safety-critical computer-based
devices were programmed at assembly level [17]. Even if
compilers for high-order languages were available for the
target processor, the design team and the certification
authorities involved felt that the ‘visibility’ provided by

Software Engineering Journal March 1991

Table 1 Assessment of
assembly-level language

Wild jumps * *
Overwrites ? ?
Semantics ? ?
Model of maths ? .
Operational arithmetic ? *
Data typing ? ?
Exception handling X ?
Safe subset ? *
Exhaustion of memory * *
Separate compilation X X
Well understood * *

assembly-level programming was a vital element in produc-
ing a safe system. This confidence has not been borne out
in practice, for reasons that are discussed below. It is fair to
comment that many designers use some form of a ‘struc-
tured assembly language’ [18, 19] when designing pro-
ducts, ie. an elementary language which has some
high-order language constructs but which nevertheless
translates one-for-one into machine instructions.

Two possibilities are worth assessment. First, a number
of UK defence contractors have devised or purchased the
capability to write good programs in structured assembly

Table 2 Assessment

of the C language
Wild jumps ?
Overwrites X
Semantics X
Model of maths X
Operational arithmetic X
Data typing X
Exception handling ?
Safe subset X
Exhaustion of memory ?
Separate compilation X
Woell understood ?

Software Engineering Journal March 1991

languages, such as PL/M/-80 and SPADE 8080. These tech-
niques have been considered in detail by Clutterbuck and
Carré [20]. The second assessment considered below is the
structured assembly language VISTA, designed by RSRE
specifically for use with the new VIPER microprocessor.
This has a more rigorous basis than other structured
assembly languages and runs on the VIPER chip. Take the
list of questions one by one.

e Wild jumps: structured assemblers offer good protec-
tion against wild jumps, as does VISTA.

e Overwrites: there is no bound checking in most
assemblers, and so it is possible to write to an address
outside of the intended range. This is also true for VISTA.

e Semantics: the semantics of structured assembly lan-
guages are reasonably well defined.

e Model of maths: it is very difficult to assess the
arithmetic invoked in assembly-level languages. Side-effects,
such as the toggling of overflow and carry flags, make
interpretation difficult. VISTA is much stronger in this
respect, in that it is based on a rigorous model of addition
and subtraction.

e Operational arithmetic: on most target micro-
processors the behaviour of elementary operational prog-
rams can be understood informally. Architectures such as
VIPER are needed to produce high confidence.

e Data typing: there is some data typing in structured
assembly languages but protection is incomplete.

e Exception handling: there is no recovery mecha-
nisms in structured assembly-level languages. In the VIPER
processor, exceptions such as integer overflow cause the
chip to stop, recovery being via the external system. The
VISTA language itself does not support the handling of
exceptions.

e Safe subsets: structured assembly-level languages
available commercially have been derived informally from
parent languages that possess a number of dangerous con-
structs. Great care is needed when programming in the sim-
plified structured language.

e Exhaustion of memory: providing that recursion
is barred, structured assembly languages should avoid the
risks inherent in running out of memory.

e Separate compilation: the linkers provided with
the assembly-level languages may produce unexpected side-
effects. It may well be better to work with monolithic prog-
rams.

e Well understood: designers’ understanding of struc-
tured assemblers can be very good. However, there may be
a mistaken belief that you are ‘closer to the machine’ and
hence ‘safer’.

Overall, it is acknowledged that the very careful use of
structured assembly languages may be acceptable in pro-
jects where the risk to human life is comparately low.

4.3 The C language

This Section is based on a draft of the ISO Standard for C.
This Standard has been produced to reflect the language
implemented by existing C compilers. This approach is very
different from the ISO Standards for Pascal and Modula-2,
in which an attempt was made to provide a more stringent
definition. A consequence of this approach with Pascal is

53

that, even eight years after the Standard was agreed,
several significant implementations do not conform to the
Standard. With C, this position should not arise, although
the price paid for this is that the Standard is weak and most
legal programs can behave differently on conforming
systems.

[0 Wild jumps: the C equivalent of the case statement
is achieved by means of a switch statement. If no matching
statement is found to the switch expression (and there is no
default), then no action is performed. This is more secure
than the unchecked facility in Pascal and Modula-2. An
insecurity in flow control exists in the calling of a pro-
cedure/function by means of a variable.

O Overwrites: since store access is implicitly via poin-
ters and pointers can be formed without restriction, very
few forms of access and assignment can be shown to be
safe.

[0 Semantics: the language definition for ISO docu-
ments current practice, rather than defining a uniform
behaviour.

[0 Model of maths: the language supports both
signed and unsigned integer arithmetic. Unsigned integer
arithmetic is modulo the word length without overflow
detection and is therefore inherently insecure. Since C does
not support subranges, it is difficult to show that any
integer calculation cannot overflow. The sign of the result of
integer division is defined by the implementation rather
than the language (as in Pascal, Modula-2 and Ada). Divi-
sion by zero is undefined, although recovery by a signal is
possible,

[0 Operational arithmetic: the action taken on
integer overflow is undefined, although recovery by a signal
is possible. The variability permitted by the Standard will
make effective validation very difficult.

[0 Data typing: the data typing is very weak in C. The
type checking that does exist can be overridden by means
of the cast operators.

O Exception handling: the C language defines six
signals that can be used by a programmer to recover from a
detected event (such as divide by zero). Unfortunately, there
is no requirement that the corresponding events are
detected, and hence the signal facility will depend on the
properties of a particular implementation.

[0 Safe subsets: no safe subset seems feasible for the
language.

[0 Exhaustion of memory: there is no specific
signal for storage overflow, and hence any recovery seems
unlikely.

[0 Separate compilation: the separate compilation
system is insecure. However, good tools arr. conventionally
used with C (e.g. ‘make’ and ‘link’), which ensures a textual
consistency of program texts. Conformance to the new
ANSI/ISO Standard for C should help, since the facility for
parameter specification eases the checking problem for com-
pilers.

[0 Well understood: the C language is widely under-
stood by the large (and growing) UNIX community. Hence,
there is little problem in this aspect of the language; good
courses and textbooks are available.

Overall, the use of C for safety-critical software must be
very strongly deprecated. In particular, the language is sig-

54

nificantly worse than an assembly language because many
aspects of the definition are undefined, unspecified or vary
between implementations. It might be thought that C+4
would be a potential language for this area being a deriv-
ative of C with object-oriented design features. Since all C
programs are supposed to be acceptable to C 4+ systems,
no additional security seems possible. Of course, a subset of
C ++ might well be a contender, but the relationship of a
subset of a superset to C is too tenuous to draw any conclu-
sions at this stage.

44 CORAL 66

Industry now has access to validated CORAL 66 compilers,
by virtue of the tests applied by the UK MoD. This gives
some confidence that a particular compiler obeys the broad
requirements of the language definition [21], which in itself
is an informal document in the mathematical sense.
However, little theoretical analysis of CORAL 66 has been
attempted, largely because until recently it had not been
used in the development of highly safety-critical equipment.
Over the last few years, a handful of UK defence contrac-
tors have developed subsets of CORAL 66 for use in critical
areas of procurement. Take the list of questions.

e Wild jumps: except for the SWITCH statement,
CORAL 66 provides reasonable protection against jumping
to an arbitrary location.

e Overwrites: the use of anonymous references allows
any location to be overwritten. Such constructs should be
excluded from safety-critical subsets.

e Semantics: the semantics of CORAL 66 are uncertain
in a number of areas. Translators for static code analysis
handle only subsets of the language.

Table 3 CORAL 66 and subset
Shongi‘@l_yejf:) : - e g T
Wild jumps ? *
Overwrites X *
Semantics ? *
Model of maths ? ?
Ooperational arithmetic X ?
Data typing ? ?
Exception handling X X
Safe subset X ' ?
Exhaustion of memory ? *
Separate compilation ? ?
Well understood ? *

Software Engineering Journal March 1991

e Model of maths: some work has been done on the

analysis of fixed point arithmetic in CORAL 66, but there is

no definitive model of the arithmetic.

e Operational arithmetic: there is little confidence

in the precise mathematical behaviour of operational prog-

rams derived from unrestricted CORAL 66 source text.

e Data typing: user-defined data typing does not exist

in CORAL 66. There is a small fixed set of types.

e Exception handling: there are no recovery mecha-

nisms in CORAL 66.

e Safe subsets: subsets of CORAL 66 exist and have

been found to be safer than unrestricted use of the lan-

guage.

o Exhaustion of memory: Providing recursion is

avoided, there should not be any problem at runtime.
Separate compilation: CORAL 66 does not have

any standard method of separate compilation. Manufac-

turers have produced their own schemes for linking

modules, which include limited type checking.

e Well understood: designers understand CORAL 66

text reasonably well (at least in the UK), and a certain

degree of maturity is apparent in software delivered to the

UK MOD.

Table 3 shows the markings, which are believed to be fair
for the full language and for a typical sub-language, of the
type used in recent UK defence contracts.

It is not surprising that the unrestricted use of CORAL 66
is not a good option. The language was designed 20 years
ago, well before research had begun to show the character-
istics needed for ‘safe’ languages. As the appreciably higher
assessment for CORAL subsets indicates, it is possible to
use CORAL more safely, if a rigorous code of practice is
used to eliminate the bad features of the language. Provided
static code analysis or a similar technique is employed to
check the source text down to and including full semantic
analysis, good CORAL implementations can be produced.

4.5 Pascal

As designed originally by Wirth and codified subsequently
in the ISO Standard, Pascal is a comparatively well defined
language. Nevertheless, as described in the answers to the
questions below, it is perfectly possible to write dangerous
programs in unrestricted Pascal. This has been demon-
strated conclusively in a number of examples given by
Wichmann [22].

However, the last seven years’ work by Dr. Carré at the
University of Southampton and at NPL have produced a
detailed scientific knowledge of the semantics of Pascal and
the execution of programs on a given target processor.
From the work at Southampton has come SPADE Pascal, a
subset of ISO Pascal which is suitable for safety-critical
applications. Based on this theoretical knowledge, there is
every reason to treat subsets of ISO as serious candidates
when designing high-integrity systems.

Apply the now familiar questions.

[0 Wild jumps: there is a potential trap in the Pascal
CASE statement, which may lead to a jump to an arbitrary
location, but otherwise the control flow constructs are
sound.

(0 Overwrites: Pascal is comparatively weak in the

Software Engineering Journal March 1991

- N

TABLE 4 [ISO Pascal and
SPADE Pascal

Wild jumps ? *
Overwrites ? *
Semantics ? *
Model of maths * d
Operational arithmetic ? 4
Data typing ? *
Exception handling X X
Safe subset X *
Exhaustion of memory ? *
Separate compilation ? ?
Well understood * .

area of overwriting, since this can be done by indexing
using an unchecked value or via an erroneous pointer.

[0 Semanties: the semantics of ISO Pascal are well
understood, and both ISO Pascal and the SPADE subset
have a formal definition.

0 Model of maths: there is a firm model for integer
arithmetic but no such model for REAL arithmetic
(conventionally, floating point).

O Operational arithmetic: the behaviour of integer
arithmetic can be determined precisely and is checked by
the compiler validation process. The behaviour of REAL
arithmetic is not defined and, in consequence, the validation
suite only performs a partial check. .

O Data typing: Pascal types are well defined and com-
pilers detect many erroneous assignments. However, variant
records create holes in the protection.

0 Exception handling: No exception handling is
provided in Pascal. SPADE Pascal, analysed by static code
analysis, will not encounter integer overflows due to the
inclusion of range checks in the intermediate language.

O Safe subsets: as noted above, the SPADE Pascal
subset is very well defined. This bars the use of variant
records and severely limits constructs that employ pointers.

[0 Exhaustion of memory: with programs written
in ISO Pascal there is no certain way of ensuring that the
heap space is not exhausted at runtime. SPADE Pascal is
deterministic in this respect.

0 Separate compilation: Pascal does not provide a
separate compilation system. Module systems provided by
industry vary in security.

55

O Well understood: Pascal is readily understood by
programmers and those projects that have used SPADE
Pascal have found interpretation very easy.

It is clear that Pascal has similar defects to the other lan-
guages considered in this paper. What gives the language
the edge, for the moment, is the intensive theoretical studies
into its imperfections in universities and research labor-
atories. Table 4 shows the details of the assessment.

Therefore, it is concluded that SPADE Pascal has just
about the same integrity as hoped for in the future from an
Ada sub-language (see Section 4.7). However, currently the
SPADE Pascal tools are more highly developed than their
Ada equivalents.

4.6 Modula-2

The Modula-2 language has a substantial fraction of the
power of Ada but is only of the same degree of complexity
as ISO Pascal. In some respects, it can be regarded as a
highly suitable language for safety-critical software, being
strongly typed and with modules for information hiding.
ISO has agreed to standardise the language, and this work
is being undertaken by BSI. The key questions are
answered for the language defined in this new Standard. It
is not appropriate to answer the questions for the original
language [23], since this definition is not precise enough.

o Wild jumps: the case statement is insecure unless all
the possible options have been covered. It is easy to cover
all cases by means of an ‘otherwise’ clause. In addition, a
simple static check can ensure that all the cases have been
covered (a useful wamning in a compiler). Attempting to
execute a case that has not been covered raises an excep-
tion, which is easy for an implementation to trap. Another
form of insecurity in flow control is the calling of a pro-
cedure/function by means of a procedure/function variable.
If the value of the variable has not been set, then an excep-
tion is raised. Unfortunately, in this situation, detection is
difficult at runtime and virtually impossible (in general)
statically.

e Overwrites: the potential insecurity of access via/to
an uninitialised pointer is the same as for ISO Pascal.
Access to array elements is also the same as for Pascal.

e Semantics: the language definition for ISO is being
produced in VDM [11], and hence it is thought that this
will provide a better basis for analysis than any other Stan-
dard language. VDM is underpinned by mathematics.

e Model of maths: the model of arithmetic used is that
of an implementation-defined sub-range of the integers.
This is rather more precise than Pascal. For floating point,
it is hoped that the ISO Standard will be written to refer-
ence a newly proposed Standard for floating point [4].

e Operational arithmetic: if the limitations of a
finite word length for integers is exceeded, then Modula-2
specifies that an exception is raised. The action is then
dependent on the implementation. The type of action is
checked by the validation procedures, as for Pascal. (A
prototype Modula-2 validation suite is available, which will
be used for formal validation once the Standard is agreed
and the suite revised accordingly.)

e Data typing: although Modula-2 is a strongly typed
language, there are three loopholes to the type rules:

56

Table 5 Modula-2 and a subset

Wild jumps ? hd
Overwrites ? *
Semantics * *
Model of maths d *
Operational arithmetic ? ?
Data typing ? *
Exception handling ? ?
Safe subset ? *
Exhaustion of memory ? ?
Separate compilation * *
Well understood * *

[0 unsafe use of variant records, as in Pascal;

[0 use of an explicit unsafe conversion function;

[J wuse of parameters of type WORD, which matches
any parameter type.

e Exception handling: no recovery strategy is
required in the proposed Standard. However, it is expected
that the exceptional situations, which are simple for imple-
mentations to detect, will be mandated with at least one
option in a compiler.

e Safe subsets: a safe subset would exclude case state-
ments with uncovered cases and the three forms of type
loopholes noted above.

o Exhaustion of memory: no provision is made for
trapping stack overflow. The allocation of space on the heap
is, in effect, in control of the user. Hence, the user can write
allocation routines that ensure that the heap space is suit-
ably bounded.

e Separate compilation: the separate compilation
system is type-secure. This is checked by the validation pro-
cedures.

o Well understood: the Modula-2 language has been
available for some years. The ISO Standard will differ
mainly in being more rigorously defined. It is a relatively
simple language and therefore should not present any diffi-
culty to the designers and programmers of safety-critical
software.

Table 5 needs to be interpreted with care. First, it applies
only to the Modula-2 Standard, when agreed. Some assess-
ment has been performed of existing implementations,
which has shown that they are not appropriate for critical
software. Secondly, although a Modula-2 subset looks good,
it may lack adequate functionality for a specific application.
For instance, the handling of low-level input-output may

Software Engineering Journal March 1991

require assembly language (this applies to other languages
as well). In addition, a user-written space allocator for the
heap, written to trap heap overflow, needs to use an unsafe
feature of the language. Nevertheless, it is felt that of the
Standard languages, Modula-2 is inherently more secure
than the others considered here.

4.7 Ada

With the availability of validated compilers and simple
Programming Support Environments (PSE), Ada is now a
practical language for small to medium-sized projects.
However, the semantics of parts of the Ada language have
not been specified fully in the definition [24], and compiler
writers are having to make pragmatic decisions in imple-
menting certain constructs. Even in projects that are not
safety-critical, discipline is required in the use of the lan-
guage if reliable systems are to be produced. This is typical
of any new high-order language in its first few years of use.
After a while, designers learn which design techniques and
language constructs should be avoided.

As regards subsets, or sub-languages, several attempts
are under way in the UK to produce codes of practice that
will constrain programmers to the use of those Ada con-
structs for which the semantics are certain. A number of the
problems are listed by McGettrick [25]. Much work
remains to be done for safety-critical systems, although
‘Safe Ada’ [26] and SPARK [27] show some promise of
yielding a solution. Therefore, the assessment given below
of the characteristics of a sub-language that could appear is
of necessity, based on theoretical considerations rather than
experience.

As before, list the answers to the key questions.

O Wild jumps: there are no constructs in Ada that
allow a jump to an arbitrary location.

Table 6 Adaanda
hypothetical sub-language

Wild jumps * *
Overwrittes ? *
Semantics ? ?
Model of maths ? *
Operational arithmetic ? .
Data typing * *
Exception handling . .
Safe subset X ?
Exhaustion of memory X ?
Separate compilation * *
Woell understood ? *
Software Engineering Journal March 1991

[0 Overwrites: provided that all low-level facilities,
such as UNCHECKED_CONVERSION, are avoided, there is
no way an Ada program can overwrite a random location.

[0 Semantics: about 800 queries have been raised with
the US Department of Defense over the definition of Ada.
Probably enough is known to form a small sub-language,
which can be translated accurately and allow static code
analysis to be done, but it must be noted that uncertainties
still exist about the definition.

[0 Model of maths: there is a good model of Ada
arithmetic. The Ada compiler validation suite does some of
the necessary conformity checks.

[0 Operational arithmetic: because of the theoreti-
cal work on Ada, the arithmetical behaviour of simple oper-
ational programs can be predicted.

[0 Data typing: the Ada strong typing rules are
powerful and provide appreciably more security than in
CORAL 66 or Pascal.

O Exception handling: all runtime errors in Ada
result in exceptions being raised, with more than adequate
means of writing handlers being provided to the pro-
grammer. This can be a two-edged sword, since dangerous
recovery mechanisms may be designed.

1 Safe subsets: as noted above, work is in hand to
derive sub-languages from Ada.

(0 Exhaustion of memory: it is not easy to analyse
an Ada program to establish that it will not run out of
resources at runtime.

0 Separate compilation: Ada has a firm separate
compilation system, with type checking across module
boundaries.

[0 Well understood: as Ada is so new, there must be
doubts about the extent to which the language constructs
are understood.

Overall, Ada passes through the filter of questions in a com-
paratively smooth manner. Table 6 shows the authors’
assessments of its merits and problems, together with a
theoretical marking for a high-quality sub-language. A more
detailed assessment of Ada appears in Reference 3.

Given the above assessment, it might be thought that the
use of Ada in an unrestricted manner would be a reasonable
option. For the reasons given in this paper, the authors
believe that it is too early to use the unrestricted Ada lan-
guage when developing safety-critical systems. Precondi-
tions for the use of the language should be greater
industrial experience of using Ada, on less critical systems,
and the development of a sound sub-language. A tool,
which could provide a high degree of confidence in Ada
programs (suitably written), is proposed in Reference 2.

5 Conclusions and recommendations

The clearest conclusion to be drawn from this paper is that
a code of practice, designed to enforce a subset of the
chosen language, is an essential element when implement-
ing safety-critical software. Considering the assessment in
Tables 1 to 6, the position, regarding the choice of computer
language, is judged to be as follows.

o The languages that design teams should consider as
candidates for use in high-integrity systems are, according

57

to the assessments in this paper, and in descending order of
merit

[0 ISO Pascal subsets supported by validation tools,
(e.g. SPADE Pascal);

[0 an Ada sub-language, when available;

O aModula-2 sub-language, when available;

0 aCORAL 66 subset.

If used carefully and backed up by the use of at least static
code analysis (and preferably formal proofs), these lan-
guages should enable designers to satisfy the requirements
of national and international Standards for safety-critical
systems.

e If analysis of the hazards suggests that the risks are
comparatively low, the second group of languages that may
be considered includes, in no particular order

O structured assembly languages;

O DoD Ada, with minimal restrictions;
[ISO Pascal, with minimal restrictions;
[0 Modula-2, with minimal restrictions.

In the authors’ judgement, systems developed using any one
of these second choice languages will not satisfy the stric-
test requirements of national and international Standards
for safety-critical equipment.

e Based on the assessments in this paper, the use of the
following languages is to be deprecated when safety is an
issue:

[0 unrestricted use of assembly languages;
O C(despite its many adherents);
0O unrestricted use of CORAL 66.

As acknowledged at several points in this paper, the above
lists will vary as time progresses and revised forms of this
paper, or something equivalent, will need to be issued about
every three years, to give an updated view to managers and
design teams.

It is interesting to speculate on future directions in this
area. More secure languages would help, such as NewSpeak,
but development here is very slow as gaining acceptance for
a new language is very difficult. More realistically, tools can
be used to ensure compliance with a safe subset; this paper
shows that such subsets are useful and much more secure
than full Ada or Pascal, for example. One of the authors has
his own solution to the insecurities in Ada [2] which is
tool-based, rather than introducing a new language.

If program proof is to be attempted, then good design is
essential. Developments such as object-oriented design can
help but should not be thought of as a panacea. A function-
al programming style aids program proof significantly, but
such a strict style leads to code with unacceptable per-
formance in many cases.

This paper does not consider the problem of the reliabil-
ity of high-level language compilers. It should be noted that
this is a serious issue, as revealed by a special tool [28].
Proven software components may provide an answer, as in
Micro-Gypsy [7].

6 Acknowledgment

© Crown copyright 1991.
58

7 References

[1] WICHMANN, BA., and CIECHANOWICZ, Z]. (Eds):
‘Pascal compiler validation’ (Wiley, 1982)
[2] WICHMANN, B.A.: ‘Low-Ada: an Ada validation tool’. NPL
Report DITC 144/89, 1989
{3] WICHMANN, B.A.: ‘Insecurities in the Ada programming
language’. NPL Report DITC 137/89, January 1989
[4] WICHMANN, B.A.: ‘Towards a formal specification of float-
ing point’, Comput. J., 1989, pp. 432434
[5] MOORE,]S.: ‘PITON: a verified assembly level language’.
Computational Logic Inc., September 1988
[6] SMITH, MK, CRAIGEN, D, and SAALTINK, M.: ‘The
nanoAVA definition.” Computational Logic Inc., June 1988
[7] YOUNG, W.D.: ‘Verified compilation in Micro-Gypsy." Com-
putational Logic Inc., October 1989
[8] SUFFRIN, B.: ‘Z Handbook, draft 1.1’. Oxford University
Programming Research Group, October 1985
[9] HAYES, L.: ‘Specification case studies’ (Prentice-Hall, 1987)
[10] SPIVEY, JM.: ‘Understanding Z' (Cambridge University
Press, 1988)
[11] JONES, CB.: ‘Systematic software development using VDM’
(Prentice Hall, 1989)
[12] MOD: Policy Statement on Defence Standard 00-55. Director
of Standardization, MoD, March 1988
[13] MOD: Interim Defence Standard for the Procurement of
Safety-Critical Software. Director of Standardization, May
1989
[14] CARRE, BA.: ‘SPADE static code analysis manual’. Prog-
ramm Validation Ltd. April 1985
[15] RTP. MALPAS Users’ manuals. Rex, Thompson and Part-
ners, April 1986
[16] CURRIE, LF.: ‘NewSpeak — an unexceptional language’,
Softw. Eng.], 1976, 1, (4), pp. 170-176
[17] CULLYER, W].: ‘Hardware integrity’, Aeronaut. J., August/
September 1985
[18] WIRTH, N.: ‘PL360: a programming language for 360 com-
puters’, J. ACM, 1968, (1), 15
[19] WICHMANN, B.A.: ‘PL515: an Algol-like assembly lan-
guage for the DPP 516". NPL Report, April 1970
[20] CLUTTERBUCK, D.L, CARRE, BA.: “The verification of
low-level code’, Softw. Eng. J., 1988, 8, (3), pp. 97-111
[21] IECCA: IECCA Official definition of CORAL 66. HMSO, 1970
[22] WICHMANN, B.A.: ‘Notes on the security of programming
languages’ in LIBBERTON, G.P. (Ed): ‘10th Advances in
Reliability Technology Symp: (Elsevier, 1988)
{23] WIRTH, N.: ‘Programming in Modula-2' (Springer-Verlag,
1988)
[24] ICHBIAH,].D. et al.: Reference manual for the Ada program-
ming language. ANSI MIL-STD 1815A (also ISO 8652)
[25] McGETTRICK, A.: ‘Program verification using Ada’
(Cambridge University Press, 1982)
[26] HOLZAPFEL, R., and WINTERSTEIN, G.: ‘Ada in safety-
critical applications’. Ada Europe Conference, 1988
[27] CARRE, BA., and JENNINGS, TJ.: ‘SPARK — The Spade
Ada Kernel.” University of Southampton, March 1988
[28] WICHMANN, B.A,, and DAVIES, M.: ‘Experience with a
compiler testing tool’. NPL Report DITC 138/89, 1989

The paper was received on 16th October 1989.

W.J. Cullyer is Lucas Professor of Electronics, with the Department
of Engineering, University of Warwick, Coventry CV4 7AL, UK;
SJ. Goodenough is with the Air Defence and Air Traffic Control
Group, RSRE, Malvern, Ministry of Defence, WR14 3PS, UK; and
B.A. Wichmann is with the Division of Information Technology
and Computing, National Physical Laboratory, Teddington, Mid-
dlesex, TW11 OLW, UK.

Software Engineering Journal March 1991

